Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Sci Rep ; 13(1): 10288, 2023 06 24.
Article En | MEDLINE | ID: mdl-37355753

Increasing energy expenditure through uncoupling protein 1 (UCP1) activity in thermogenic adipose tissue is widely investigated to correct diet-induced obesity (DIO). Paradoxically, UCP1-deficient male mice are resistant to DIO at room temperature. Recently, we uncovered a key role for fibroblast growth factor 21 (FGF21), a promising drug target for treatment of metabolic disease, in this phenomenon. As the metabolic action of FGF21 is so far understudied in females, we aim to investigate potential sexual dimorphisms. Here, we confirm that male UCP1 KO mice display resistance to DIO in mild cold, without significant changes in metabolic parameters. Surprisingly, females gained the same amount of body fat as WT controls. Molecular regulation was similar between UCP1 KO males and females, with an upregulation of serum FGF21, coinciding with beiging of inguinal white adipose tissue and induced lipid metabolism. While energy expenditure did not display significant differences, UCP1 KO females significantly increased their food intake. Altogether, our results indicate that hyperphagia is likely counteracting the beneficial effects of FGF21 in female mice. This underlines the importance of sex-specific studies in (pre)clinical research for personalized drug development.


Hyperphagia , Obesity , Uncoupling Protein 1 , Animals , Female , Male , Mice , Hyperphagia/drug therapy , Mice, Knockout , Obesity/drug therapy , Obesity/etiology , Obesity/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
2.
Neurosci Lett ; 770: 136420, 2022 01 23.
Article En | MEDLINE | ID: mdl-34958912

This study aimed to explore the beneficial effects of the antioxidant N-acetylcysteine (NAC) on the degenerated dopamine system. The short- and long-term regulatory mechanisms of NAC on the 6-OHDA hemiparkinsonian rat model were longitudinally investigated by performing positron emission tomography (PET) imaging using the specific dopamine transporter (DAT) radioligand [18F]FE-PE2I. The results demonstrate that after a unilateral dopamine insult NAC has a strong influence on the non-lesioned hemisphere by decreasing the levels of DAT in the striatum early after the lesion. We interpret this early and short-term decrease of DAT in the healthy striatum of NAC-treated animals as a beneficial compensatory effect induced by NAC.


Acetylcysteine/pharmacology , Antioxidants/pharmacology , Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Parkinson Disease/metabolism , Animals , Corpus Striatum/drug effects , Female , Nortropanes/pharmacokinetics , Oxidopamine/toxicity , Parkinson Disease/diagnostic imaging , Parkinson Disease/etiology , Positron-Emission Tomography , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Sprague-Dawley
3.
Mol Cell Neurosci ; 98: 131-139, 2019 07.
Article En | MEDLINE | ID: mdl-31200101

Parkinson's disease is the second most common neurodegenerative disease caused by degeneration of dopamine neurons in the substantia nigra. The origin and causes of dopamine neurodegeneration in Parkinson's disease are not well understood but oxidative stress may play an important role in its onset. Much effort has been dedicated to find biomarkers indicative of oxidative stress and neurodegenerative processes in parkinsonian brains. By using proton nuclear magnetic resonance (1H NMR) to identify and quantify key metabolites, it is now possible to elucidate the metabolic pathways affected by pathological conditions like neurodegeneration. The metabolic disturbances in the 6-hydroxydopamine (6-OHDA) hemiparkinsonian rat model were monitored and the nature and size of these metabolic alterations were analyzed. The results indicate that a unilateral injection of 6-OHDA into the striatum causes metabolic changes that not only affect the injected hemisphere but also the contralateral, non-lesioned side. We could clearly identify specific metabolic pathways that were affected, which were mostly related with oxidative stress and neurotransmission. In addition, a partial metabolic recovery by carrying out an antioxidant treatment with N-acetylcysteine (NAC) was observable.


Acetylcysteine/pharmacology , Antiparkinson Agents/pharmacology , Brain/metabolism , Metabolome , Parkinson Disease/metabolism , Animals , Brain/drug effects , Female , Oxidative Stress , Oxidopamine/toxicity , Parkinson Disease/etiology , Rats , Rats, Sprague-Dawley
...